DS5100

2020 Tokyo Olympics
Reilly Meinert, Max Ryoo, Said Mrad, Sydney Masterson

Project Scenario

- Brief Introduction About the data set
- Olympics
- https://olympics.com/en/olympic-games/tokyo-2020/medals
- GDP
https://www.worldometers.info/gdp/gdp-by-country/
- Kaggle Integration
- https://www.kaggle.com/arjunprasadsarkhel/2021-olympics-in-tokyo?select=Teams.xlsx

Dataset Introduction

- Pandas Dataframe to csv
https://github.com/hyunsukr/DS5100-Final/tree/main/data
- Dimension
- Tokyo Olympics: 74×14
- Historical Olympics: 1315×9
- Data was webscrapped and engineered to produce a final dataframe with the information below.

	Name	Gold	Silver	Bronze	Total	Country	GDP	GDP abbreviated	GDP growth	Population	GDP per capita	NOC	Discipline	Continents
0	USA United States of America	39	41	33	113	United States	\$19,485,394,000,000.00	\$19.485 trillion	2.27\%	325,084,756	\$59,939.00	United States of America	47	North America
1	CHN People's Republic of China	38	32	18	88	China	\$12,237,700,479,375.00	\$12.238 trillion	6.90\%	1,421,021,791	\$8,612.00	People's Republic of China	33	Asia
2	JPN Japan	27	14	17	58	Japan	\$4,872,415,104,315.00	\$4.872 trillion	1.71\%	127,502,725	\$38,214.00	Japan	48	Asia
3	GBR Great Britain	22	21	22	65	United Kingdom	\$2,637,866,340,434.00	\$2.638 trillion	1.79\%	66,727,461	\$39,532.00	Great Britain	28	Europe
4	ROC ROC	20	28	23	71	Russia	\$1,578,417,211,937.00	\$1.578 trillion	1.55\%	145,530,082	\$10,846.00	ROC	34	Asia
5	AUS Australia	17	7	22	46	Australia	\$1,323,421,072,479.00	\$1.323 trillion	1.96\%	24,584,620	\$53,831.00	Australia	35	Australia
6	NED Netherlands	10	12	14	36	Netherlands	\$830,572,618,850.00	\$831 billion	3.16\%	17,021,347	\$48,796.00	Netherlands	27	Europe
7	FRA France	10	12	11	33	France	\$2,582,501,307,216.00	\$2.583 trillion	1.82\%	64,842,509	\$39,827.00	France	33	Europe

Dataset Web Scraping

- Class called Web_Scrapper
- Three data sets were webscrapped Olympics
GDP
Only gives 2020 (recent GDP) GDP Historical Data
ass Web_Scrapper():
def _init_(self, baselink="https://olympics.com/tokyo-2020/0lympic-games/en/results/all-sports/", history = \{\}):
self.baselink = baselink
(ith open('src/resources/history.json') as json_file:
history = json.load(json_file)
self.history = history
def scrape_gdp_history(self, years):
\#\# Not Tested Yet
time_series = pd.DataFrame()
pbar.start()
for i in pbar(range(0, len(years))):
if int(years[i]) > 1949:
df = self.scrape_gdp_economy(years[i])
time_series = time_series.append(df)
return time_series
def scrape_gdp_economy(self, year):
URL = 'https://countryeconomy.com/gdppyear=' + year
$r=$ requests.get(URL) \#http requests tot ehs specified url and save it in k
soup $=$ BeautifulSoup (r.content, 'htmL5lib')
tables = soup.find_all('table', \{'id': 'tbA'\})
tables_percap = soup.find_all('table', \{'id':'tbPC'\})
tempList = []
for table in tables:
for child in table.children:
for td in child:
for $t r$ in $t d$:
templist.append(tr.get_text())
second_templist $=$ []
for table in tables_percap:
for child in table.children:
for td in child:
second templist, append(tr. get_text())
empList $=$ tempList [5:len(tempList)-1]
econd templist $=$ second tempList [6:len(second templist) -11

Data Processing - Interaction

- Interaction with user
- Progress bar to show \% data pull
- Give feedback to user how much the data pull is complete.

- DS5100-Final - python src/main.py - 105×32
(venv) MacBook-Pro:DS5100-Final maxryoo\$ python src/main.py
Kicking off Data Pipeline
Collecting Historical Olympic Data

Data Processing - Data Engineering

"United States of America" : "United States" "People's Republic of China" : "China",
"Japan" : "Japan",
"Great Britain" : "United Kingdom", "ROC" : "Russia",
"Australia" : "Australia",
"Netherlands": "Netherlands",

- Joined datasets based on country name
- Some country names were different
- Had to map countries names through a
json (dictionary) through data cleaning
- Added geographical location for the data
- Continents each country is located
- Utilized a third party package
- pycountry-convert

```
class Cleaner():
    def _init_(self):
        # Opening JSON Mapping file
        with open('src/resources/mapping.json') as json_file:
        mapping = json.load(json_file)
    with open('src/resources/mapping_continents.json') as json_file:
        cont_map = json.load(json_file)
    self.continent_maps = cont_map
    self.country_maps = mapping
    def join_gdp(self, gdp, olympic, join_cols=['Country']):
        temp_olympic = olympic.copy()
        temp_olympic["Country"] = temp_olympic["Name"].str[4:].map(self.country_maps
        joined = pd.merge(temp_olympic, gdp, how='left', on=join_cols)
        return joined
    def join_aggregate_teams(self, teams, olympic):
        teams = teams.groupby("NOC")["Discipline"].count().reset_index()
        emp = olympic.copy()
    temp ['tempName'] = temp["Name"].str [4:]
    oined = pd.merge(temp, teams, how='inner', left_on='tempName', right_on='NOC')
    joined = joined.drop(colun
    return joined
```


Testing

- Pytest to test the code / coverage
- Data engineering functions and data quality testing
- All methods relating to data
- Code coverage of 100% except main

Exploratory Data Analysis

Countries Competing

Africa: 12.16\%

Total Medals Won

World Statistics

Conclusions:

- US has highest GDP and number of medals won
- China second for both
- Relationship not as strong for rest of world
- Russia, Australia, \& Great Britain have high medal counts but lower GDPs compared to US and China

Medal Count versus GDP

Medals Won versus GDP Per Capita: . 2975

Medals Won versus GDP: 0.8362

Conclusion: The relationship between GDP and medals won is much stronger than the relationship between GDP per capita and medals won.

Model Building

- Multiple Linear Regression
- $\quad R^{\wedge} 2=0.8479990568528668$
- Mean Squared Error = 109.1391895919251
- \quad Root Mean Squared Error $=10.446970354697342$
- Possible Next Steps
- Multicollinearity
- Linear Regression assumption checking
- GDP and Population had a beta of 0, which may raise eyebrows

Feature Coefficient

$\mathbf{7}$	Continents_Europe	6.200415
$\mathbf{8}$	Continents_North America	4.484664
$\mathbf{5}$	Continents_Asia	3.548857
$\mathbf{6}$	Continents_Australia	2.443772
$\mathbf{4}$	Discipline	0.784625
$\mathbf{0}$	GDP	0.000000
$\mathbf{2}$	Population	0.000000
$\mathbf{9}$	Continents_South America	-6.659379
$\mathbf{1}$	GDP growth	-0.138194
$\mathbf{3}$	GDP per capita	-0.000042

Time Series Analysis

125 Total Number of Gold Medals aquired by nations of North America 125
100

 Total Number of Bronze Medals aquired by nations of Europe

 Total Number of Silver Medals aquired by nations of North America

Total Number of Bronze Medals aquired by nations of North America

Conclusion / Next Steps

- Code in github is available with virtual environments
- Making the github repo a package repo will make it so that we can deploy the package. Setup.py
- Dive deeper in the Multiple Linear Regression model such as multicollinearity etc.

