Natural Disasters over Time: A Study of the Frequency and Economic Impact of Climate Related Disasters

> by Haley Egan, Maggie Houck, Will Johnson, Diana Morris

Motivation

- Climate change is thought to be associated with an increase in certain natural disasters, among them drought, wildfires, flooding, and extreme temperatures.
- Our project tracks the frequency and severity of such disasters (measured in numbers and total economic impact) over time.

Research Questions

Are natural disasters increasing over time? Are natural disasters increasing in severity over time?

Are natural disasters and their severity linked to Climate Change?

The Data

- A subset from Kaggle of a more comprehensive disaster dataset maintained by EM-DAT, the International Disaster Database.
- Tracks the total number of disasters of each type along with the total economic impact.

Explanation of Data

Criteria for a Disaster's Inclusion

At least 10 deaths

At least 100 people affected (including injured or homeless)

The declaration of a state of emergency or an appeal for international assistance.

Economic Damage

Includes total estimated losses, reconstruction costs, insured losses. All amounts in thousands of U.S. dollars (2019 value).

Data Cleaning

Not all disasters are climate-change related

- Volcanos,
- earthquakes,
- tsunamis

Missing Data present

Data Cleaning

Data Cleaning

- Disasters unrelated to climate change were removed.
- Economic damages and frequency of disasters were combined in a single dataframe.
- Years prior to 1970 were removed due to many missing data points.
- Years after 2015 were removed due to reporting lags in the source data set.

import unittest

class CorrectColumnsTest(unittest.TestCase):

def test_deleted(self):
 check1 = DisasterData()
 check1.cleanDf()
 self.assertNotIn('Earthquake',check1.df.columns)

def test_retained(self): check2 = DisasterData() check2.cleanDf() self.assertIn('Extreme weather',check2.df.columns)

class ColumnsTypeTest(unittest.TestCase):

def test_type(self):
 check3 = DisasterData()
 check3.cleanDf()
 self.assertEqual(check3.df['Extreme temperature'].dtypes, float)

def test_type2(self):

check4 = DisasterData()
check4.cleanDf()
self.assertEqual(check4.df['Extreme weather'].dtypes, float)

if __name__ == '__main__':
 unittest.main()

Unit Tests

- We confirmed that our cleaning had in fact retained the relevant columns, excluding disasters not linked to climate change.
- We further tested that the resulting columns yielded the correct data type.

All Natural Disasters

- All Natural Disasters
- Extreme Weather
- Drought
- Extreme Temperature

This graph depicts the trend of disasters over time. The size of bubbles represents the total cost, with different colors tracking different types of disaster.

Correlation Matrix

Conclusions

- A clear upward trend in the number of natural disaster over time, for all natural disaster types, as well as an increase in economic impact.
- The increase in economic impact may indicate the increase in severity of the natural disasters over time.
- With our current dataset, we are unable to conclude that these increases are directly tied to Climate Change, something that will take further analysis with a larger scope.

Where to go from here

- This can be used to make budgetary decisions on future disaster relief.
- Bringing in carbon emissions data on top of our current dataset as a covariate in our regression analysis.
- Controlling for economic/population growth over this time period. Maybe there has been more for disasters to destroy.
- Geospatial data to control for where these disasters are occurring.