

DS 5100 Project: Food Deserts

Max Jones, Kaia Lindberg, Grace Lyons, Mani Shanmugavel December 2021

Food Deserts

• In this project, we wished to examine the relationships of food deserts across the US

 Food deserts: geographic areas where residents have few to no convenient options for securing affordable and healthy foods especially fresh fruits and vegetables

Research Question 1

Where do food deserts occur?

To answer, we wished to compare the occurrence of food deserts to the following:

- Population
- Metro Status (city vs non-city)
- Region (Northeast, Midwest, West, South)
- Ethnicity

Research Question 2

How could our project be used to analyze specific areas?

To answer, we will demonstrate our project with an analysis into a single state.

Project Scenario

--Data set source: USDA Food Environment Atlas

--Contains various statistics for each county in the US

-- Over 250 variables, including:

- Food Choices
 - Food store accessibility (access/proximity)
 - Type of stores
 - Availability of fresh and local foods
- Health and Wellbeing
 - Obesity and diabetes rates
 - Recreation and physical activity levels
- Community characteristics
 - Metro/non-metro
 - Ethnicity percentages
 - \circ Income and poverty

Variables of Interest

- 2015 Census Population
- Metro Status
- Region
- Ethnicity Percentages

Percentage of low income, low access to food

--Variable that measures what percent of the population is classified as having a low income and low access to food

--Used this to measure food deserts

Project Pipeline

Data Cleaning

Wrote a class with methods for each data cleaning step to improve readability and facilitate testing

	FIPS	State	County	Variable_Code	Value
0	1001	AL	Autauga	LACCESS_POP10	18428.439690
1	1001	AL	Autauga	LACCESS_POP15	17496.693040
2	1001	AL	Autauga	PCH_LACCESS_POP_10_15	-5.056026
3	1001	AL	Autauga	PCT_LACCESS_POP10	33.769657
4	1001	AL	Autauga	PCT_LACCESS_POP15	32.062255

Clean state column to handle extra spaces

"VA" versus "VA"

Webscrape FIPS lookup table to resolve inconsistencies in county names

Reformat data so 1 row for each FIPS code and each variable is a column

4

Split county and state level data into two separate dataframes

"Raleigh" versus "Raleigh County"

Data Cleaning

1007

0

1

2

3

					ş	FIPS	State	County		Variable_Co	ode	Value
Data Classing				0	1001	AL	Autauga		LACCESS_POF	P10	18428.439690	
Data Cleaning					1	1001	AL	Autauga		LACCESS_POF	P15	17496.693040
Wrote a class with methods for each				ch	2	1001	AL	Autauga	PCH	LACCESS_POP_10_	_15	-5.056026
data cleaning step to improve readability and facilitate testing				3	1001	AL	Autauga		PCT_LACCESS_POF	P10	33.769657	
				4	1001	AL	Autauga		PCT_LACCESS_POF	P15	32.062255	
FIPS	State	County	2010_Census_Population A	AGRIT	RSM_	_OPS0'	7 AGRI	TRSM_OP	S12	AGRITRSM_RCT07	AGR	RITRSM_RCT12
1001	AL	Autauga	54571.0			7.	D	1	0.0	228000.0		146000.0
1003	AL	Baldwin	182265.0			18.0	D	1	6.0	124000.0		204000.0
1005	AL	Barbour	27457.0			27.0	D	3	32.0	163000.0		304000.0
1007	AL	Bibb	22915.0			5.0	0		6.0	NaN		21000.0
FIPS	State	County	CACFP_PART_2012 CACFP_	PART_	_201	.3 CA	CFP_PA	RT_2014	CAC	CFP_PART_2015 C	ACFI	P_PART_2016

	FIPS	State	County	CACFP_PART_2012	CACFP_PART_2013	CACFP_PART_2014	CACFP_PART_2015	CACFP_PART_2016
0	1	AL	Total	42903.75	41862.50	45038.75	51263.75	59447.50
1	2	AK	Total	10540.75	10962.75	11429.50	10786.50	10039.00
2	4	AZ	Total	41670.75	42945.25	40344.00	42551.50	42618.00

Data Analysis

Examples

- 1. Filtering down to a single state
- 2. Remove missing values based on threshold
- 3. User interaction to make selections for analysis
- 4. Calculate correlations between variables of interest
- 5. Keep only the most recent column
 - 6. Remove "hidden" state level variables

Varia	Please select a variable PCT_DIABETES_ADULTS13			PCT_OBESE_ADULTS17	
df_county.groupby	<pre>v('State')[['PCT_OBESE_A</pre>	PCT_D1	State AK	0.0	
Popu	PC1_FREE_HONCHIS PCH_VEG_ACRESPTH_07_12 WICSPTH16	0.464768 0.450395		AL	0.0

Testing

- Developed Classes to clean and analyze data
- Thorough unit testing of cleaning and analysis class using assertEqual()
- Used test fixtures like setup() to set up the test cases
- Data gathered for State and County FIPS codes through Web scraping was also tested

#@title Default title text # Create class that inherits from unittest.TestCase class DataCleaning_Test(unittest.TestCase): def setUp(self): # Set up # Create class with small dataset to use for testing sample_df = pd.DataFrame({'FIPS':[1,1,20,20,1001,1001,99999], 'State': ['AL', 'AL', 'KS', 'KS ', 'AL', 'AL ', 'ZZ'], 'County': ['Total','Total','Total','Total','Autauga','Autauga County','Fake'], 'Variable_Code':['Var1', 'Var2', 'Var1', 'Var2', 'Var1', 'Var2', 'Var1'], 'Value': [5,np.nan,10,np.nan,np.nan,20,np.nan]}) self.clean1 = DataCleaning(sample df) def test clean state col(self): # Is any white space removed from states? # Clean state column self.clean1.clean state column() # Test: using assetEqual() method self.assertEqual(list(self.clean1.df.State), ['AL', 'AL', 'KS', 'KS', 'AL', 'AL', 'ZZ']) def test state name col(self): # Is the state code correct based on FIPS code? self.clean1.full data cleaning() df = self.clean1.df state result = df[df['FIPS'] == 20].State.to_string(index=False) # Test: using assetEqual() method self.assertEqual(result.strip(), 'KS') def test county name col(self): # Is the County name correct based on FIPS code? self.clean1.full data cleaning() df = self.clean1.df county result = df[df['FIPS'] == 1001].County.to_string(index=False) print(result) # Test: using assetEqual() method

self.assertEqual(result.strip(), 'Autauga')

Food Deserts are more common in...

Low Population

Non-metro Areas

West Region

Areas with Lower White Population

Food Deserts and other Variables

Diabetes Rate

Poverty Persistence Rate

We've also analyzed relationships between variables within a single state

of Recreation Facilities vs Adult Diabetes

Child Poverty vs Adult Diabetes

Conclusions--Question 1

Where do food deserts occur?

- Small population
- Non-metro
- West, Midwest, and South regions
- Low White population

Conclusions--Question 2

How could our project be used to analyze specific areas?

For New York:

- Negative correlation between adult diabetes rate and number of recreational facilities
- Positive correlation between child poverty rate and adult diabetes rate

Significance of Results

In areas we determined to be food deserts, one could:

- Incentivize grocery stores and supermarkets
- Fund city-wide programs to encourage healthier eating
- Extend support for small, corner-type stores and neighborhood-based farmers markets

For Further Investigation

- Additional research into all 250 variables
- Machine learning model to more accurately predict food desert locations
- Perhaps obtain more accurate food desert variable that emphasized healthy food over all food

Works Cited

www.aecf.org/blog/exploring-americas-food-deserts

www.ers.usda.gov/data-products/food-environment-atlas/

https://www.ers.usda.gov/webdocs/publications/45014/30940 err140.pdf